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Abstract

This serves as a further study of the ESTR3112 project to introduce another way to understand

Elastic Weight Consolidation (EWC)[1] from an optimization perspective. This is a little different

from the project report with some minor changes.

1 Introduction

Online learning is a learning problem where training data comes in sequential order. A trivial solution is

to retrain the whole model when new data comes. This method usually costs many resources. Another

solution is introducing L2 regularization, which means introducing another penalty term (∆θ)2 and

directly training on the new data. This method usually performs poorly.

Elastic Weight Consolidation (EWC)[1] is a regularization method for online learning introduced by

DeepMind in 2016. Its basic idea is to follow L2 regularization but weigh different parameters sepa-

rately.

In detail, under the situation of online learning, we have already finished the optimization problem

on task A by solving θ∗A = argmin
θ

LA(θ). Here comes another task B and we want to finish another

optimization problem on both task A and B by solving θ∗ = argmin
θ

(λLA(θ) + LB(θ)), where λ is a

hyper-parameter indicating the importance of task A. The idea of EWC is that we can use another

computational cheaper loss function to replace the original one, i.e.

min
θ

λLA(θ) + LB(θ) ≡ min
θ

LB(θ) +
λ

2

∑
i

Fi(θi − θ∗A,i)
2, (1)
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where LA and LB are twice-differentiable convex loss functions for task A and task B, θ∗A = argmin
θ

LA(θ)

and Fi = (
∂L(θ∗

A)
∂θ∗

A,i
)2 under some assumptions.

Equality (1) is based on the 2-task scenario, but it can be easily converted into the multi-task sce-

nario1. Since DeepMind introduced EWC, many online learning models focusing on different fields

have appeared thanks to the power and generalization ability of EWC.

[1] proves equality (1) using statistical methods. Now we will try to use optimization methods to deal

with this equality. However, this equality is not easy to prove from an optimization perspective. Here

we will give an equivalent proof to a simpler version, which can be proved equivalent to (1) using

statistical method. That is

min
θ

λLA(θ) + LB(θ) ≡ min
θ

LB(θ) +
λ

2

∑
i

F ′
i (θi − θ∗A,i)

2, (2)

where F ′
i =

∂2L(θ∗
A)

∂(θ∗
A,i)

2 .

2 Proof

This section focuses on proving equality (1) and (2). Before starting the proof, we need to declare some

assumptions to make the proof holds. According to the experiments conducted on 3, these assumptions

hold for certain kinds of dataset.

Assumption 1 New trained θnew is close to θ∗A, which indicates ||θnew − θ∗A|| ≤ ϵ for some small ϵ.

Then the Second-order Taylor Series Expansion of LA around θ∗A will be

LA(θ) = LA(θ
∗
A) + (∇LA)

T (θ − θ∗A) +
1

2
(θ − θ∗A)

THLA
(θ − θ∗A) (3)

Assumption 2 θs′ are independent from each other.

Formally, ∂2LA(θ)
∂θ2

i,j
= 0 if i ̸= j. It indicates the Hessian matrix of L(θ) is a diagonal matrix, i.e.

(HLA
)i,j = 0 if i ̸= j. (4)

Let’s simulate the procedure of online learning. Suppose we have a model with parameter θ∗A which

has already been optimized at the original training set (task A). So θ∗A = argmin
θ

LA(θ) is a known

1See 4.2 for detail.
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parameter and also a local (global) optimal solution of LA(θ). According to First Order Necessary

Condition,

∇LA(θ
∗
A) = 0. (5)

If we have an additional training set (task B) and we want our model to be optimized on both task A

and task B, then what we need to get is the newly optimized θ∗ such that θ∗ = argmin
θ

(λLA(θ)+LB(θ)).

The corresponding optimization problem is

min
θ

λLA(θ) + LB(θ). (6)

Since we already have the optimized parameter θ∗A on task A and we believe the newly trained param-

eter will be close to θ∗A (Assumption 1), expand LA around θ∗A according to (3), then we will get (6)

is equivalent to

min
θ

LB(θ) + λ(LA(θ
∗
A) + (∇LA)

T (θ − θ∗A) +
1

2
(θ − θ∗A)

THLA
(θ − θ∗A)). (7)

Because LA(θ
∗
A) is a constant, this term does not affect the optimization problem. Besides, we have

(5). Hence, (7) is equivalent to

min
θ

LB(θ) +
λ

2
(θ − θ∗A)

THLA
(θ − θ∗A). (8)

Due to Assumption 2, only diagonal entries of HLA
are non-zero. Furthermore, we have (HLA

)i,i =

∂2L(θ∗
A)

∂(θ∗
A,i)

2 . Finally, (8) is equivalent to

min
θ

LB(θ) +
λ

2

∑
i

∂2LA(θ
∗
A)

∂(θ∗A,i)
2
(θi − θ∗A,i)

2, (9)

which shows (2) holds.

If loss functions L is negative log-likelihood, using some statistical methods2, we can get

E

[(
∂L(θ)
∂θ

)2
∣∣∣∣∣ θ
]

= E

[
∂2L(θ)
∂θ2

∣∣∣∣ θ] . (10)

2See Lehmann & Casella, eq. (2.5.16), Lemma 5.3, p.116. Or https://en.wikipedia.org/wiki/Fisher information#Definition.
Minus sign is eliminated because here we consider its negative form.
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However, (10) can not directly show (∂L(θ)
∂θ )2 = ∂2L(θ)

∂θ2 . To continue the proof, we have to take it as

an assumption.

Assumption 3 The second order derivative of L(θ) is roughly equal to the square of the first order

derivative of L(θ).

(
∂L(θ)
∂θ

)2 =
∂2L(θ)
∂θ2

(11)

Then (9) is equivalent to

min
θ

LB(θ) +
λ

2

∑
i

(
∂LA(θ

∗
A)

∂θ∗A,i

)2(θi − θ∗A,i)
2. (12)

Overall, we have (6) is equivalent to (12), which shows (1) holds. □

3 Experiment

This section focuses on the fitness of data to assumptions.

3.1 Assumption 1

We use a linear regression model to fit randomly sampled data3. Different tasks are defined as using

different data features to predict values. Moreover, in different tasks, we also change the θActual in

data generation to simulate the distribution shift.

What we find is that no matter how data changes, the error caused by Taylor expansion will always

be dominated by the error caused by Assumption 2.

3.2 Assumption 2

We use a linear regression model to fit randomly sampled data4. According to Figure 1, the observation

is that ∑
i

|(HL)i,i|∑
i

∑
j

|(HL)i,j |
∝ log(

|M |
DimM

),

where |M | is the size of sample data and DimM is the dimension of sample data5. The left-hand side

ratio can be treated as approximate accuracy. That means if this ratio is high, our approximation in

Assumption 2 will be more accurate.

3Notebook is available at https://github.com/Yasgant/pytorch-ewc/blob/master/taylor.ipynb
4Notebook is available at https://github.com/Yasgant/pytorch-ewc/blob/master/hessian.ipynb
5Another way to explain it is that DimM is the number of parameters
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Figure 1: Hessian ratio

Figure 2: Result on MNIST dataset. No EWC(Left), Original EWC(Middle), New EWC(Right)

3.3 Assumption 3

Theoretically, Assumption 3 is always wrong because θ∗A is a local optimal solution of LA and
∂LA(θ∗

A)
∂θ∗

A
=

0 while
∂2LA(θ∗

A)
∂(θ∗

A)2 ̸= 0. But in practice, it is hard to get the optimal θ∗A.
∂LA(θ∗

A)
∂θ∗

A
̸= 0 sometimes hold

due to the limitation of practical optimization methods.

This does not mean what we have done makes no sense. Many experiments have shown that EWC

works well in online learning. Our idea is to use some experiments to show F ′
i and Fi have the same

effect in real-world datasets to prove Assumption 3 indirectly.

We reuse other’s EWC implementation on MNIST dataset but change the EWC term from (
∂L(θ∗

A)
∂θ∗

A,i
)2

to
∂2L(θ∗

A)
∂(θ∗

A,i)
2 .

6 Different tasks are defined as different permutations of image pixels (such as all pixels

originally located at (1, 1) will be located at (2, 5) in a new task). According to the result in Figure

2, we find that
∂2L(θ∗

A)
∂(θ∗

A,i)
2 (right) performs better than (

∂L(θ∗
A)

∂θ∗
A,i

)2 (middle). The explanation is that the

original F is an estimation of F ′. Dropping out this estimation can improve performance.

6Code is available at https://github.com/Yasgant/pytorch-ewc
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4 Discussion

This section focuses on the capabilities and limitations of EWC on different models and datasets.

4.1 Assumptions

Due to Assumption 1, if there is a huge distribution shift on the new data (task), compared with using

EWC, retraining the whole model will be a better choice because new trained θnew will be far from

θ∗A, which cause the approximation accuracy of Taylor expansion become extremely low.

According to the result of 3.2, we know that the approximation accuracy of Assumption 2 depends on

sampling data size and parameter number. It means EWC will work well in a low-parameter model

with a huge training dataset.

From Figure 2, we conclude that by replacing F with F ′, the performance of EWC will improve.

Although calculating F ′ takes more time than calculating F , this time is only spent in the preprocessing

period. Besides, this additional preprocessing time can be simply omitted if we have large enough

training data.

4.2 Online Learning

Recall that in online learning, we have a sequence of tasks. The original EWC can only handle the

situation of two tasks. In order to deal with multi-task situations, we can modify EWC to fit multi-task

situations.

Suppose we have three tasks A,B,C, and two optimized parameters θ∗A, θ
∗
B on task A, task AB

respectively. If we want to train this model on task ABC, the optimization problem will be

min
θ

LC(θ) +
λA

2

∑
i

FA,i(θi − θ∗A,i)
2 +

λB

2

∑
i

FB,i(θi − θ∗B,i)
2.

In general, suppose we have tasks T1, T2, ..., Tn+1 and optimized parameters θ∗T1
, θ∗T2

, θ∗Tn
. To train the

model on task Tn+1, the optimization problem is

min
θ

LTn+1(θ) +

n∑
j=1

λj

2

∑
i

FTj ,i(θi − θ∗Tj
)2, (13)

where FTj ,i = (
∂LTj

(θ∗
Tj

)

∂θ∗
Tj,i

)2.
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However, when the number of tasks is large, we can not afford the cost of computing estimated loss

separately. [2] shows that under some restrictions, (13) is equivalent to

min
θ

LTn+1
(θ) +

1

2

∑
i

F ∗
i (θi − θ∗Tn

)2, (14)

where F ∗
i =

n∑
j=1

(λjFTj ,i), which is independent from θ and can be computed at the beginning of

training task Tn+1.
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