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Abstract

The generalization error bound is always a hot topic in supervised machine learning.
Several prior works have shown that this error can be bounded in terms of the
mutual information between the algorithm input and output. In the paper titled
"Generalization Bounds via Convex Analysis"[1], the authors propose a new bound
in terms of general dependence measure. This report focuses on this paper and
presents its main result and brief proof ideas. This report also discusses the tightness
of key inequalities and the findings from this paper.

Note: Since this paper uses many tools from convex analysis, which is not covered
in CSCI4230, readers are expected to read the textbook [2] in advance. In this
report, readers are assumed to have basic knowledge of convex analysis.

1 Introduction

In the supervised machine learning field, generalization error bound is one of the key problems in
validating the effectiveness of machine learning models. Prior works of [3] and [4] have shown that
the expected generalization error of any algorithm A can be bounded in terms of Shannon’s mutual
information between the input dataset S with n data points and the output W = A(S). Suppose that
the loss function ℓ(w,Z) of any fixed hypothesis w is σ-subgaussian, where Z is the random data
point, then the generalization error is bounded in the following form:

|E[gen(W,S)]| ≤
√

σ2I(W ;S)

n
, (1)

where I(·; ·) is the mutual information function. This bound can be intuitively explained that the
algorithm leak little information about the training data will have smaller generalization error.

However, the above bound has several weaknesses. For example, the mutual information I(W ;S)
may be extremely large or even infinite when the algorithm significantly relies on the training data
and leaks too much of them. One solution is to replace the input dataset S with a single data point
Zi [5], i.e., replace I(W ;S) with I(W ;Zi). Recent works have also shown that other dependence
measures such as Rényi’s α- divergences and Csiszár’s f -divergences can also be used to replace the
mutual information to bound the generalization error [6]. Observing that there are many options to
replace the mutual information, there is a need for a bounding form in terms of general dependence
measures instead of only focusing on the mutual information.

Ideally, we may want to find a bound in the form of

|E[gen(W,S)]| ≤
√

CF (W ;S)

n
,

where F (·; ·) is one dependence measure. However, this inequality only holds when several assump-
tions are satisfied. In this paper, the authors model dependence measures as convex functions of the



joint distribution of Wn and Sn with strongly convexity properties. Any such function H will satisfy
a generalization bound of the form

|E[gen(Wn, Sn)]| ≤
√

Cℓ,µ,HH(PWn,Sn)

n
, (2)

where PWn,Sn
is the joint distribution of Wn and Sn, and Cℓ,µ,H is a constant depending on the loss

function ℓ, the data distribution µ and the strong-convexity properties of H . Formal definitions of
these terms will be introduced later.

The key contribution of this work is to propose a generalization error bound in terms of general
dependence measures. Besides, the key idea to prove this bound is to use Fenchel-Young inequality
with the Fenchel conjugate on the dependence measure H . Although this new bound does not indicate
the generalization error decays faster than n−1/2, it provides a general form of the constant factor.

2 Main result and proof ideas

2.1 Preliminaries

In the supervised learning scenario, we are given a dataset Sn = {Z1, ..., Zn} from a distribution
µ.1 We are expected to propose a learning algorithm A that maps this dataset into a hypothesis
Wn = A(Sn). We define the instance space Z and the hypothesis class W . Thus, Zi ∈ Z , Sn ∈ Zn,
and Wn ∈ W .

We use loss function ℓ : W × Z → R+ to evaluate the performance of a hypothesis. Therefore,
the training error is L(Wn, Sn) =

1
n

∑n
i=1 ℓ(w, zi) and the test error EZ∼µ[ℓ(w,Z)]. Overall, the

generalization error is defined as

gen(Wn, Sn) = L(Wn, Sn)− EZ∼µ[ℓ(Wn, Z)|Wn].

To illustrate the proof idea, we further define the following notations. We denote the set of all
probability distributions over a given set H as P(H), and the set of bounded functions H → R as
F(H). To simplify the writing, we use shorthand notation ∆ = P(W × S) and Γ = P(W). We
denote the joint distribution of (Wn, Sn) by Pn = PWn,Sn , the marginal distribution of Wn by PWn .
For any P ∈ ∆, we use the notation P|s ∈ Γ to denote the conditional distribution of W given
Sn = s. For any g ∈ F(W) and distribution Q ∈ Γ, we denote

⟨Q, g⟩ = EW∼Q[g(W )].

Similarly, for any f ∈ F(W ×S) and distribution P ∈ ∆, we denote

⟨P, f⟩ = E(W,S)∼P [f(W,S)] = ES [⟨P|S , f(·, S)⟩].

For loss function, we define the centered loss ℓ̄(w, z) = ℓ(w, z)− EZ∼µ[ℓ(w,Z)], the i-th sample
loss as the function ℓ̄i(s, w) = ℓ̄(zi, w) and the i-th partial average loss as L̄i =

1
n

∑i
j=1 ℓ̄j . Then

the expected generalization error can be written as

E[gen(Wn, Sn)] = E[L̄n(Wn, Sn)] = E(W,S)∼Pn
[L̄n(W,S)] = ⟨Pn, L̄n⟩.

We define the dependence measure H : ∆ → R+. We further define the conditional dependence
measure h : Γ → R+, i.e., H(P ) = ES [h(P|S)]. We assume h is convex and lower semicontinuous
on Γ and satisfies h(PWn

) = 0.

For any Q,Q′ ∈ Γ, we define subdifferential of h at Q′ denoted by ∂h(Q′) as the set of functions
g ∈ F(W) such that

1This section mainly follows the original paper.
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h(Q) ≥ h(Q′) + ⟨Q−Q′, g⟩

holds. Furthermore, we say a conditional dependence measure h is α-strongly convex with respect to
a norm || · || if for any Q,Q′ ∈ Γ and g ∈ ∂h(Q′),

h(Q) ≥ h(Q′) + ⟨Q−Q′, g⟩+ α

2
||Q−Q′||2 (3)

holds. For any norm || · ||, we define the associated dual norm as

||f ||∗ = sup
Q,Q′∈Γ:||Q−Q′||≤1

⟨Q−Q′, f⟩

for any bounded function f ∈ F(W). Apart from the defined training set Sn = {Zi}ni=1, we
define the independent "ghost dataset" S′

n = {Z ′
i}ni=1 consisting of i.i.d. samples from the same

distribution µ. For i ∈ [n], we define the "mixed bag" dataset S(i)
n = {Z1, Z2, ..., Zi, Z

′
i+1, ..., Z

′
n}

and the corresponding output W (i) = A(S
(i)
n ). We define Pi as the joint distribution of (W (i), Sn).

Finally, for any i, we define ∆i as the convex hull of all distributions {Pk}ik=0 : ∆i = {P ∈ ∆ :∑i
k=0 αkPk, αk ≥ 0,

∑i
k=0 αk = 1}.

2.2 Main result

The main result follows the form of equation 2. The constant Cℓ,µ,H is replaced by 4E[||ℓ̄(·,Z)||2∗]
α .

Theorem 1. Given a dependence measure H , where h is α-strongly convex with respect to the norm
|| · ||. With the help of the dual norm || · ||∗, the generalization error of A is bounded as

|E[gen(Wn, Sn)]| ≤
√

4H(Pn)E[||ℓ̄(·, Z)||2∗]
αn

.

2.3 Proof ideas

The proof consists of one equation (5), one theorem (2), and one lemma (3). Because the whole proof
is too long and tedious, to make this report concise and easy to understand, I will only show the basic
proof ideas of these three items.

Recall that the proof will mainly use Fenchel-Young inequality. We define the Fenchel conjugate of
dependence measure H as the potential function Φ that maps functions f : W ×S → R to reals. Φ
is defined as

Φ(f) = sup
P∈∆n

{⟨P, f⟩ −H(P )}. (4)

This potential function can also be interpreted as the "overfitting potential". Noting that this potential
function Φ is exactly the Fenchel conjugate of H , then apply the Fenchel-Young inequality to the
expected generalization error as follows:

ηE[gen(Wn, Sn)] = η⟨Pn, L̄n⟩ ≤ H(Pn) + Φ(ηL̄n). (5)

Here we already get a bound on the expected generalization error. We will further get a bound on the

potential function Φ(ηL̄n). Noting that E[gen(Wn, Sn)] ≤ H(Pn)
η + Φ(ηL̄n)

η ≤
√

4H(Pn)Φ(ηL̄n))
η2 ,

we will expect to get a bound on Φ(ηL̄n) of the order η2

n .

We further define the subdifferential of Φ as the convex hull of the maximizers of {⟨P, f⟩ −H(P )} :

∂Φ(f) = conv
(
argmax
P∈∆n

{⟨P, f⟩ −H(P )}
)
.

Thus, we can define the corresponding generalized Bregman divergence as
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BΦ(g||f) = Φ(g)− Φ(f) + sup
P∈∂Φ(f)

⟨P, f − g⟩.

Then we can have the following theorem to bound the potential function Φ and convert it into the
Bregman divergence BΦ.
Theorem 2. For any η ∈ R, the overfitting potential satisfies

Φ(ηL̄n) ≤
n∑

i=1

BΦ(ηL̄i||ηL̄i−1).

Note that Φ(0) = 0 due to H(P0) = 0. Starting from the left hand side,

Φ(ηL̄n) =

n∑
i=1

(
Φ(ηL̄i)− Φ(ηL̄i−1)

)
+Φ(0)

=

n∑
i=1

(
BΦ(ηL̄i||ηL̄i−1)− η sup

P∈∂Φ(ηL̄i−1)

⟨P, L̄i−1 − L̄i⟩

)

=

n∑
i=1

(
BΦ(ηL̄i||ηL̄i−1) +

η

n
inf

P∈∂Φ(ηL̄i−1)
⟨P, ℓ̄i⟩

)

Then we have to show infP∈∂Φ(ηL̄i−1)⟨P, ℓ̄i⟩ ≤ 0. I will not cover the whole proof but give you a
brief idea.

As Z1, ..., Zi−1 are independent of Zi, seeing the former or not will affect the helpfulness of Zi.
Therefore, for any P ∈ argmaxP∈∆n

{⟨P, ηL̄i−1⟩ −H(P )}, which means P overfits the first i− 1

data points, ⟨P, ℓ̄i⟩ = 0. As these P ’s are in ∂Φ(ηL̄i−1), infP∈∂Φ(ηL̄i−1)⟨P, ℓ̄i⟩ ≤ 0 holds.

So far, we have gained a bound of the order n (contributed by the summation). We want to derive a
new bound on this Bregman divergence of the order η2

n2 . Then we have the following lemma.
Lemma 3. Suppose that h is α-strongly convex with respect to the norm || · ||∗. Then,

BΦ

(
ηL̄i||ηL̄i−1

)
≤

η2EZ

[
||ℓ̄(·, Z)||2∗

]
αn2

I will also not give detailed proof. The brief idea is due to the duality of strongly convexity and
smoothness, the α-strongly convexity of H implies 1

α -strongly convexity smoothness of its Fenchel
conjugate Φ. Thus, by the definition of Bregman divergence, we can have

BΦ

(
ηL̄i||ηL̄i−1

)
≤ 1

α
||ηL̄i − ηL̄i−1||2µ,∗ =

η2EZ

[
||ℓ̄(·, Z)||2∗

]
αn2

.

By combining equation 5, Theorem 2 and Lemma 3, we can have

η⟨Pn, L̄n⟩ ≤ H(Pn) +
η2EZ

[
||ℓ̄(·, Z)||2∗

]
αn

.

Considering both η > 0 and η < 0, we have

|E[gen(Wn, Sn)]| = |⟨Pn, L̄n⟩| ≤ |H(Pn)

η
+

ηEZ

[
||ℓ̄(·, Z)||2∗

]
αn

| ≤
√

4H(Pn)E[||ℓ̄(·, Z)||2∗]
αn

. (6)

3 Application in KL-divergence

We can choose KL-divergence as the dependence measure, i.e.,
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h(Q) = DKL(Q||Q0) =

∫
W

log
dQ

dQ0
dQ0,

where Q and Q0 are the marginal hypothesis distribution of P and P0. This KL-divergence is 1-
strongly convex with respect to the total variation distance ||Q−Q′||TV = supf :||f ||∞≤1⟨f,Q−Q′⟩
and its dual norm ||f ||∞ = supw∈W |f(w)|. With this marginal h, the dependence measure H(P ) =
E[DKL(P|S ||Q0)] = DKL(P ||P0). Then apply Theorem 1, we can get

Corollary 1. The generalization error of any learning algorithm satisfies

|E[gen(Wn, Sn)]| ≤
√

4DKL(Pn||P0)EZ [||ℓ̄(·, Z)||2∞]

n

This paper also mentions other applications in p-norm divergences and smoothed relative entropy,
and shows that Theorem 1 yields meaningful results based on these dependence measures.

4 Discussions

4.1 Inequality tightness

I will discuss the tightness of key inequalities used in this proof in the following paragraphs.

Equation 5 The inequality is tight. As suggested by [7], for all Pn ∈ ∂Φ(ηL̄n), η⟨Pn, L̄n⟩ =
H(Pn) + Φ(ηL̄n), where ∂Φ(ηL̄n) ̸= ϕ.

Theorem 2 The inequality is tight. The key factor of this inequality is infP∈∂(ηL̄i−1)⟨P, ℓ̄i⟩. This
term has a possibility of being negative only when argmaxP∈∆n

{⟨P, ηL̄i−1⟩ − H(P )} is non-
convex. Therefore, any loss function and dependence measure yielding convex solution space will
have equality in this theorem. For example, when ℓ = 0, the solution space will be convex because
H is a convex function by definition.

Lemma 3 The inequality is tight. As [8] suggests, when the conditional dependence measure H is
exactly α-strongly convex everywhere, i.e., equation 3 takes equality for all Q and Q′, its Fenchel
conjugate Φ will also be exactly 1

α -strongly smooth everywhere. Therefore, this inequality is tight.

Equation 6 The inequality is tight. When η =
√

αnH(Pn)

EZ [||ℓ̄(·,Z)||2∗]
, the equality holds.

Overall, these four key inequalities in this paper are tight. However, if more assumptions are made on
dependence measures, the result may be tighter.

4.2 Insight into learning algorithms

Based on my current shallow understanding of machine learning, basic generalization error analysis
focuses on the hypothesis class W and VC Dimension dVC of W . For example, for classification
models with finite hypothesis class, with probability at least 1− δ,

gen(W) ≤
√

1

2n
log

2|W|
δ

.

For infinite hypothesis classes, we can use VC Dimension to analyze the generalization error. With
probability at least 1− δ,

gen(W) ≤
√

8

n
log

4((2n)dVC + 1

δ
.

However, these bounds only consider the hypothesis class but neither the data distribution nor the
learning algorithm. This paper gives a perspective of viewing the generalization error in terms of the
learning algorithm A, which is reflected by the dependence degree of the training dataset and the
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algorithm output. This paper further generalizes the dependence measure from specific functions
(e.g., Shannon’s mutual information) to general strongly convex functions.

This result gives us an insight into the effect of learning algorithms in generalization error bounding.
Nowadays, there are only several kinds of popular learning algorithms in modern machine learning
models, such as gradient descent on neural networks. We can narrow the analysis target to specific
learning algorithms to make appropriate strong assumptions and gain tighter bounds.

4.3 Miscellaneous

Order analysis As suggested by many papers, the decay rate of expected generalization error is
expected to be n−1/2. Therefore, the proposed bound should also have this order. When deriving the
bound, we should always keep in mind what order we currently have and what order we expect to get
to have the final order n−1/2. For example, we expect to get a bound on Φ(ηL̄n) of the order η2

n in

equation 5, and a bound on BΦ(ηL̄i||ηL̄i−1) of the order η2

n2 in Theorem 2. This technique is helpful
when deriving an inequality where the final order is known or strongly believed. Besides, this method
is similar to Dimensional analysis, a well-known method in physical analysis.

Probability bounds Referring to the discussion in 4.2, the generalization error bounds in terms of
the hypothesis class H have possibility guarantees, i.e., the inequalities hold with high possibilities.
However, the proposed bound only bounds the expected value. It is unknown if we can have a tighter
bound on the exact error value with a high probability.

From specific to general This paper is inspired by all previous studies on the expected generaliza-
tion error in terms of Shannon’s mutual information, "single-letter" mutual information, Rényi’s α-
divergences and Csiszár’s f -divergences and many other studies. And then the author can propose a
bound in terms of general dependence measures. This gives us a point that we can initially focus on
specific scenarios or strong assumptions. When satisfactory results are gained, we can then put them
into general.

5 Conclusion

This report shows the main result of the original paper [1] with brief ideas of the proof. This report
also discusses the tightness of key inequalities and some findings from the paper. Briefly, this paper
proposes a bound on the expected generalization error in terms of general dependence measure,
which allows researchers to gain the upper bound using any dependence measure that satisfies
the requirements. In the future, researchers may find better dependence measures to capture the
dependence between the input dataset and output hypothesis and get a tighter bound on expected
generalization error accordingly compared with Shannon’s mutual information. Researchers may
also make stronger assumptions on the dependence measure to gain tighter bounds.
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