
RESEARCH POSTER PRESENTATION TEMPLATE © 2019

www.PosterPresentations.com

Continual Learning Knowledge Graph Embeddings
Yang Yiliu (SID: 1155157082)
Supervisor: Prof. James Cheng

Introduction

A Knowledge Graph (KG) is a graph structure that 
contains knowledge in the form of head-relation-tail 
triples, where the head and tail are entities being 
connected with the relation.

Edge list:
Joe Biden – is – Human,
Joseph – Father – Biden,
Biden – Controls – U.S.,
…

Knowledge Graph Embeddings

However, there could be unobserved edges in KGs 
(Catherine E.F. – Is – Human).
In order to predict these missing edges, the most 
common method is to embed entities and relations into a 
low-dimension vector space.

If there is an edge (h,r,t),
The goal of an embedding
model is to fit h+r ≈ t.

To evaluate an edge in the 
embedding model, we need
a score function. Different 
embedding methods have 
different score functions.
Then the goal is converted to maximize the score.

Continual Learning

Most existing models focus on embedding static KGs. If 
there is an update, these models must retrain with the 
whole edge set, which takes a lot of time. However, real-
world KGs are always updated over time. In order to 
reduce time consumption, there is an urgent need for a 
model that supports continual learning.

Only a few models are supporting continual learning of 
KGs, such as puTransE [3], and DKGE [4]. But they both 
specified the embedding method. puTransE took TransE
as its embedding method while DKGE modified RotatE [5] 
to fit its continual learning algorithm. Currently, there is no 
common method to deal with continual learning on KGs 
that applies to all embedding methods. Here we present 
two training improvements that apply to all embedding 
methods. Compared with state-of-the-art models, our 
model has better accuracy with less training time.

Edges Replay 

Except for EWC, replaying some old edges when training 
can also reduce catastrophic forgetting. At the same time, 
replaying more edges means taking more time. There is a 
trade-off between training time and model accuracy. Here 
we propose a strategy that makes use of the old model 
and new edges to calculate the influence degrees of 
entities, and sample replay edges based on weights 
calculated by the influenced degrees.

We define the influence degree of a new edge as the 
reciprocal of the edge score. Recall that the less score is, 
the better an edge fits in the vector space. 𝐼!"#! =

$
%&'(!(!"#!)

. Then the influence degree of an entity is 
defined as 𝐼!+,-,. = ∑!"#!∈0(!+,-,.) 𝐼!"#! . Finally, the 
replaying weights for edges is defined as 𝑊!"#! =
𝐼1!2" !+,-,. + 𝐼,2-3 !+,-,..

The idea of these definitions are easy to understand. 
Take these two
KGs as 
examples.

1) Biden Controls U.S. in the first KG. Then Trump win the 
election and becomes the new president in the second 
KG. The entities are less needed to be updated.

2) But what if I
win the election?
The score of
(Oliver – Controls – U.S.) is significantly low.
Then all entities that connected to me are needed to be 
updated since it changes a lot.

Finally, the replaying edges are sampled based on the 
replaying weights for edges. Overall, the loss function of 
our model consists of two parts, i.e., the EWC loss, and 
the score loss of new and replaying edges.

Experimental Results

YAGO-3SP and IMDB-30SP are two real-world datasets 
that consist of Wikipedia data and movie data. They both 
are updated over time and have 3 and 30 snapshots
respectively.

We implemented our two improvements on DistMult [2] 
and tested this model (DistMult-OL) on the above two 
real-world datasets. The evaluation data is shown in the 
below table.

The evaluation data
shows that compared with
the state-of-the-art online
models, our model takes
less training time and
have greater accuracy.

Conclusion
In this poster, we presented two training improvements 
for continual learning in KG embeddings, which do not 
specify any embedding methods. Compared with state-
of-the-art static and online KG models, our model has a 
better efficiency in online learning with an acceptable 
accuracy loss.

References
[1] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Translating Embeddings for Modeling Multi-Relational Data, in: NIPS, 2013, pp. 
2787–2795.
[2] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations for learning and inference in knowledge bases. 
arXiv preprint arXiv:1412.6575, 2014.
[3] Y. Tay, A. Luu, and S. C. Hui, “Non-parametric estimation of multiple embeddings for link prediction on dynamic knowledge graphs,” Proceedings of the 
AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.
[4] T. Wu, A. Khan, M. Yong, G. Qi, and M. Wang, “Efficiently embedding dynamic knowledge graphs,” Knowledge-Based Systems, vol. 250, p. 109124, 
2022.
[5] Sun, Zhiqing, et al. "Rotate: Knowledge graph embedding by relational rotation in complex space." arXiv preprint arXiv:1902.10197 (2019).
[6] Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the national academy of sciences 114.13 (2017): 3521-
3526.

Embedding 
Method

Score 
Function

TransE [1] −∥h+r−t∥

DistMult [2] <h,r,t>

Applications:
1. Question-
Answering bot

2. Recommender
Systems

…

Elastic Weight Consolidation
Elastic Weight Consolidation 
(EWC) [6] is an improvement
on traditional machine learning.
And we discovered that the
modified EWC can be used in 
continual learning for knowledge graph embeddings.

Assume that there are two tasks A and B, and a model M 
which has been trained on A. Simply training M on B will 
cause a phenomenon called Catastrophic Forgetting, 
which means the model will completely forget A. The goal 
of EWC is to train M on B without forgetting A.

The idea of EWC is to assign importance degrees 𝐹- to 
each parameter and penalize the model if the parameter 
changes a lot. The derivation of the importance degree 
can be seen in [6]. 𝐹- is defined as 𝐹- = (5ℒ(7!)

57!
)8, where ℒ

is the loss function of this model. Then the new loss 
function is defined as ℒ = ℒ9(-#-+23 + 𝜆∑- 𝐹-(𝜃- − 𝜃-∗ )8, 
where 𝜆 is a hyper-parameter and 𝜃-∗ is the old parameter, 
i.e., parameter trained on the older edge set.

YAGO-3SP IMDB-30SP
MRR Hits@10 Time (s) MRR Hits@10 Time (s)

Snapshot 

1

puTransE 0.180 0.262 N/A 0.122 0.188 N/A
DKGE 0.460 0.545 953 0.381 0.569 6,950

DistMult 0.518 0.567 219 0.395 0.581 3,957

Snapshot 

2

puTransE-OL 0.186 0.259 N/A 0.119 0.182 N/A
DKGE-OL 0.440 0.539 191 0.380 0.567 350
DistMult 0.517 0.570 230 0.395 0.582 4,122

DistMult-OL 0.511 0.566 20 0.391 0.579 212

Snapshot 

3

puTransE-OL 0.173 0.247 N/A 0.123 0.187 N/A
DKGE-OL 0.442 0.542 163 0.377 0.561 423
DistMult 0.517 0.571 233 0.397 0.586 4,201

DistMult-OL 0.507 0.566 14 0.389 0.581 196


